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Abstract

This paper investigates the joint maximum likelihood (ML) data detection and channel estimation problem for
Alamouti space-time block-coded (STBC) orthogonal frequency-division multiplexing (OFDM) wireless systems. The
joint ML estimation and data detection is generally considered a hard combinatorial optimization problem. We
propose an efficient low-complexity algorithm based on branch-estimate-bound strategy that renders exact joint ML
solution. However, the computational complexity of blind algorithm becomes critical at low signal-to-noise ratio
(SNR) as the number of OFDM carriers and constellation size are increased especially in multiple-antenna systems. To
overcome this problem, a semi-blind algorithm based on a new framework for reducing the complexity is proposed
by relying on subcarrier reordering and decoding the carriers with different levels of confidence using a suitable
reliability criterion. In addition, it is shown that by utilizing the inherent structure of Alamouti coding, the estimation
performance improvement or the complexity reduction can be achieved. The proposed algorithms can reliably
track the wireless Rayleigh fading channel without requiring any channel statistics. Simulation results presented
against the perfect coherent detection demonstrate the effectiveness of blind and semi-blind algorithms over
frequency-selective channels with different fading characteristics.
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1 Introduction
The increasing demand for higher data rates in recent
years has called for transmissions over a broadband wire-
less channel which is frequency selective. The wireless
channel is thus prone to inter-symbol interference (ISI)
which severely degrades the system performance and
requires complex equalization techniques at the receiver.
The orthogonal frequency-division multiplexing (OFDM)
has emerged as the most promising scheme to combat
ISI and improve system performance. OFDM essentially
transforms a broadband channel into a number of par-
allel narrowband channels using a cyclic prefix (CP) of
appropriate length and renders simple one-tap channel
equalizer for each OFDM subcarrier [1,2]. Due to these
crucial advantages, OFDM is not only being used in many
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existing standards such as digital subscriber line (DSL),
WLAN standards (IEEE 802.11 a/b/g), LAN standard
(IEEE 802.11n) [3], MAN standards (IEEE 802.16e), digital
audio broadcast (DAB), and digital video broadcast (DVB)
[4] but also adopted for future wireless standards such
as LTE and 4G+ [5]. Besides OFDM, the spatial dimen-
sions in wireless communications are often exploited to
further enhance the system capacity and /or improve
the transmission reliability by employing multiple anten-
nas at the transmitter and/or receiver. This offers many
advantages over single-antenna systems including multi-
plexing gain and diversity gain [6]. Of several diversity
schemes available in the literature, the Alamouti scheme
[7] with two transmit and one receive antenna is the opti-
mum in both the capacity and the diversity. Alamouti
coding achieves full spatial diversity at full transmission
rate for any signal (real or complex) constellation and
offers very simple receiver structures. However, to decou-
ple the signals at the receiver side via simple decoding,
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the Alamouti scheme requires the channel between each
transmit-receive antenna to be constant over two con-
secutive OFDM symbols. Moreover, when dealing with
frequency-selective channel, the Alamouti scheme has to
be implemented over the block level.

In many wireless communications studies, it is often
assumed that channel state information (CSI) is avail-
able at the receiver side for coherent data detection. This
assumption is certainly not realistic. The current stan-
dards use pilot symbols to estimate the channel, thus
sacrificing bandwidth which otherwise would have been
available for data transmission. In high-mobility wireless
systems, the channels may even change so rapidly that
this approach will become infeasible. Blind or semi-blind
detection over time-varying wireless channels has shown
to enhance the system performance considerably [8,9].

There are numerous blind estimation and equalization
techniques available in the literature, namely, subspace-
based methods [10,11], second-order statistics [12],
Cholesky factorization [13] , and iterative methods [14].
These methods either suffer from slow convergence,
higher computational costs or assume channel to be sta-
tionary over several OFDM symbols. These drawbacks
make maximum likelihood (ML)-based approaches, e.g.,
[15,16] more attractive due to their fast convergence
despite having the higher computational cost. Usually,
suboptimal techniques are employed to reduce the com-
putational cost by restricting the search space of exhaus-
tive ML search. Some of the suboptimal techniques are
applicable to specific constant modulus constellations
[17,18]. Recently, in [19] and [20], the authors have pro-
posed a low-complexity blind ML method for general con-
stellations for single-input-multiple-output (SIMO) and
single-input-single-output (SISO) systems, respectively,
which form the basis of our paper.

1.1 Contributions
In this paper, we extend the previous algorithm developed
for SISO OFDM systems [20] to multiple-input-single-
output (MISO) OFDM systems with two transmit anten-
nas and employing Alamouti coding. Parallelizing the
results and discussions therein, we first derive the exact
blind ML algorithm based on branch-estimate-and-bound
strategy and then reduce its complexity using differ-
ent methods. Then, a semi-blind version is proposed by
assuming that few training symbols are available. The pro-
posed algorithms offers low complexity, fast convergence,
works for signals drawn from general modulation con-
stellations, and do not require any channel statistics. The
contributions are listed as:

1. Extension of blind algorithm for SISO to MISO
OFDM systems and derivation of bound used to
abort a certain search path in the blind search

algorithm. The bound is calculated in a recursive
manner offering low computations.

2. Using semi-orthogonality of the subcarriers by
exploiting the structure of fast Fourier transform
(FFT) matrix in order to reduce the computations for
calculation of bound during the blind search.

3. Reducing the complexity at low signal-to-noise ratio
(SNR) regime by employing the reliable carriers to
accelerate the convergence of blind algorithm by
reordering the subcarriers according to their
reliability. Calculation of reliability, however,
requires initial tentative channel estimates; therefore,
a semi-blind mode is adopted.

4. Reducing the complexity and or improving the
estimation performance of proposed algorithm by
exploiting the orthogonal structure of Alamouti
coding.

The framework of semi-blind algorithm is based on reli-
ably decoding the carriers by computing the vector-wise
likelihood ratio first suggested in [21]. By supplying the
algorithm with reordered carriers according to their reli-
ability index, the backtracking is minimized which is the
major source of complexity especially at low SNR. At
higher SNR regime, it has been shown that the probabil-
ity of backtracking is almost zero [20], while the number
of operations is of the order of constant times the total
number of OFDM subcarriers.

1.2 Organization of the paper
Section 2 describes the Alamouti coded OFDM system
model with frequency-selective time-variant channels,
and Section 3 describes the proposed blind ML algorithm.
In Section 4, a low complexity variant of blind ML algo-
rithm is derived by exploiting the structure of the FFT
matrix. To further reduce the complexity of the algorithm,
we propose a semi-blind algorithm in Section 5, and in
Section 6, we show how the structure of the Alamouti
coding can be utilized to favour certain advantages. Sim-
ulation results are detailed in Section 7, and we conclude
in Section 8.

1.3 Notation
We use lower case letters x to denote scalars, lower case
boldface x to denote (column) vectors and x(i) to denote
individual entries of a vector. Matrices are denoted by
upper boldface letters X, whereas the calligraphic nota-
tions X is reserved for vectors in frequency domain. We
also use x(i) to represent a partial vector consisting of first
i elements of x. (.)T , (.)∗ and (.)H represent transpose, con-
jugate and conjugate transpose (hermitian) operations,
respectively. 〈X̂ (k)〉 will denote the hard decoding deci-
sion that maps X̂ (k) to X (k). The FFT and inverse FFT
(IFFT) matrices are denoted by Q and QH respectively,
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where we define Q as ql,k = e−j2π lk/N with l, k = 0,
1, 2, · · · , N − 1. The notation ‖a‖2

B represents weighted
norm defined as ‖a‖2

B = aH Ba.

2 System model
Consider a single-user OFDM system with two trans-
mit and one receive antenna as shown in Figure 1. The
frequency-selective channels from two transmit anten-
nas to the receive antenna are modelled as finite impulse
response (FIR) filters. We assume that both channels are
independent Rayleigh-fading channels having maximum
length L and that OFDM CP length is at least L − 1 to
avoid ISI.

Let X represent information symbols and that OFDM
system has N subcarriers so that after IFFT operation the
OFDM symbol can be written as

x = √
NQHX , (1)

where Q is FFT matrix with [Q]l,k = e−j2π lk/N . Let the nth
symbol of kth transmitted block from antenna i (= 1 or 2)
be denoted by x(k)

i (n) , with n = 0, 1, · · · , N − 1. At times
k = 0, 2, 4, · · · pair of blocks x(k)

1 (n) and x(k)
2 (n) are gen-

erated according to the following Alamouti coding rule
[7,22]:

x(k+1)
1 (n) = −x∗(k)

2 ((n)N )

x(k+1)
2 (n) = x∗(k)

1 ((n)N ),
(2)

where, (.)N is the modulo N operation. Each antenna
transmits a data block of length N according to space-
time block-coded (STBC) scheme after appending the CP.
Adding CP eliminates inter-block interference and con-
verts linear convolution into circular convolution. In the
presence of additive white Gaussian noise (AWGN), the
received data blocks over two consecutive time instants
after discarding the CPs can be written as

y(j) = √
ρ H1x(j)

1 + √
ρ H2x(j)

2 + n(j), j = k, k + 1, (3)

where ρ is the SNR, H1 and H2 are circular channel matri-
ces from transmit antenna-1 and transmit antenna-2 to
receive antenna, respectively, and n is circular symmetric
AWGN with pdf: n ∼ CN(0, I). In (3), we also assumed
that channel is static over two consecutive OFDM blocks

at time instants k and k + 1. Specifically, the structure of
two circular channel matrices is

Hi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hi(0) 0 · · · hi(L−1) · · · hi(1)
...

. . .
...

...
. . .

...
hi(L−2) · · · hi(0) 0 · · · hi(L−1)

hi(L−1) hi(L − 2) · · · hi(0) 0
...

...
. . .

...
...

. . .
...

0 · · · hi(L−1) hi(L−2) · · · hi(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and where

hi = [
hi(0) hi(1) · · · hi(L − 1)

]T (4)

represents the impulse response sequence of the ith chan-
nel matrix. At the receiver side, the frequency domain
received symbols after FFT operations are obtained as

Y (j) = √
ρ �1X (j)

1 + √
ρ �2X (j)

2 + N (j), j = k, k + 1, (5)

where X (j)
i = 1√

N Qx(j)
i and �i = QHiQH are diagonal

matrices whose entries are N-point discrete Fourier trans-
form (DFT) of hi after zero padding and N (j) = 1√

N Qn(j).
Expanding (5) and using DFT properties, we get:

Y (k) = √
ρ �1X (k)

1 + √
ρ �2X (k)

2 + N (k),

Y (k+1) = √
ρ �1X (k+1)

1 + √
ρ �2X (k+1)

2 + N (k+1)

(6)

By stacking the received data symbols over consecu-
tive intervals in one column and so as the DFT channel
coefficients, (6) can be written in matrix-vector notation
as[

Y (k)

Y (k+1)

]
= √

ρ

⎡⎣ diag
(
X (k)

1

)
diag

(
X (k)

2

)
−diag

(
X ∗(k)

2

)
diag

(
X ∗(k)

1

) ⎤⎦[
H1
H2

]

+
[

N (k)

N (k+1)

]
, (7)

where Hi = diag(�i) = Q
[

hi
0

]
. Let AH consists of first

L columns of Q, then

Hi = AH hi and hi = AHi (8)
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Figure 1 Alamouti-coded OFDM system.
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This allows us to rewrite (7) as

[
Y (k)

Y (k+1)

]
︸ ︷︷ ︸

Y

=√
ρ

⎡⎣ diag
(
X (k)

1

)
AH diag

(
X (k)

2

)
AH

−diag
(
X ∗(k)

2

)
AH diag

(
X ∗(k)

1

)
AH

⎤⎦
︸ ︷︷ ︸

Xa

×
[

h1
h2

]
︸ ︷︷ ︸

h

+
[

N (k)

N (k+1)

]
︸ ︷︷ ︸

N
(9)

or even more compactly as

Y = √
ρ Xah + N , (10)

where Y and N are 2N × 1 observed data and noise vec-
tors, respectively, Xa is a 2N × 2L data matrix, which we
shall refer to as Alamouti matrix, and h is a 2L×1 compos-
ite channel vector. This model can be easily transformed
to SISO-OFDM system of [20] by replacing Xa with N ×N
square matrix diag(X ) containing N data symbols on its
diagonal. Specifically, the SISO model corresponding to
(10) is given by

Y = √
ρ diag(X )h + N , (11)

where Y and N are N-dimensional received OFDM sym-
bol and noise vector, respectively, while h is the length L
SISO channel vector. In either case, the task of receiver is
to jointly estimate the channel h and the data vector X
given only the received data symbol Y .

3 Joint ML/MAP solution
Considering the data model in (10), the joint ML chan-
nel estimation and data detection problem reduces to
minimizing the following objective function:

JML = min
h,X∈�2N

{‖Y − √
ρ Xah‖2} , (12)

where �2N denotes all possible 2N-dimensional signal
vectors. As seen from (12), the joint ML problem is a com-
binatorial problem involving |�|2N hypothesis tests, and it
is almost impossible to solve it exactly for sufficiently large
� and N.

To solve it efficiently, we propose the following strategy.
We start by decomposing the original cost function as

JML = min
h,X∈�2N

⎧⎪⎪⎨⎪⎪⎩‖Y(i)−√
ρ Xa(i)h‖2︸ ︷︷ ︸

MX(i)

+
N∑

j=i+1
‖Y(j)−√

ρ Xa(j)h‖2

⎫⎪⎪⎬⎪⎪⎭
(13)

and define

MX(i) = ‖Y (i) − √
ρ Xa(i)h‖2 (14)

as the partial joint ML metric up to the index i for X ,

where Xa(i) =
⎡⎣ diag

(
X (k)

1(i)

)
AH

(i) diag
(
X (k)

2(i)

)
AH

(i)

−diag
(
X ∗(k)

2(i)

)
AH

(i) diag
(
X ∗(k)

1(i)

)
AH

(i)

⎤⎦
is a partial Alamouti matrix of dimension 2i × 2L, Xa(j),
the 2×2L matrix is the same as Xa(j) with all X (j) replaced

by X (j), Y (i) =
[[
Y (k)

(i)

]T [
Y (k+1)

(i)

]T
]T

is the partial data

vector of dimension 2i×1 and the partial matrix AH
(i) con-

sists of first i rows of AH . It should be noted that partial
Alamouti matrix Xa(i) is the function of the first i data
points, while Xa(i) is a function of the ith data point.
Obviously, the solution that minimizes this partial joint
ML metric is not the globally optimal. But we have the
following lemmaa:

Lemma 1. Let R represent the optimal value of the objec-
tive function in (12). If MX(i) > R, then X (i) cannot be
the ML solution X̂ML

(i) of (12). In other words, for any esti-
mate X̂ (i) to correspond to the ML solution, we should have
MX(i) < R.

From Lemma 1, if the optimal value R of objective
function (12) can be estimated, then we can adopt the
following tree search procedure for joint estimation and
detection: At each subcarrier i, make a guess of new value
of X (i) = [

X1(i) X2(i)
]T and use that along with previ-

ous estimates to construct X̂ (i) and X̂a(i). Then, estimate
h to minimize the associated cost function:

MX̂(i)
= min

h

{
‖Y (i) − √

ρ X̂(i)h‖2
}

(15)

and calculate the resulting metric MX̂(i)
. If MX̂(i)

< R, then
proceed to the next subcarrier i + 1; otherwise, backtrack
and change the guess of X (j) for some j ≤ i. We call
this approach as the branch-estimate-and-bound strategy,
which reduces the search space of exhaustive ML search to
those (partial) sequences that satisfy the given constraint
MX̂(i)

< R. This approach however does not work for i ≤ L
as Xa(i) will be full rank for any choice of X (i), and there-
fore, h with 2L degrees of freedom can always be chosen
by least squares (LS) to yield the trivial (zero) value for
MX̂(i)

. To obtain a non-trivial value of MX̂(i)
, we have to use

L pilots, but it would defeat our original motive of blind
estimation. To overcome this problem, we adopt weighted
regularized LS and instead of minimizing the ML objec-
tive function, JML, we minimize the maximum a posteriori
(MAP) objective function:

JMAP = min
h,X∈�2N

{
‖h‖2

R−1
h

+ ‖Y − √
ρ Xah‖2

}
, (16)
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where Rh is the block diagonal autocorrelation matrix of
the composite channel vector h, i.e., Rh = E

{
hhH}

. The
objective function in (16) can also be decomposed as

JMAP = min
hX∈�2N

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩‖h‖2
R−1

h
+ ‖Y (i) − √

ρ Xa(i)h‖2︸ ︷︷ ︸
MX(i)

+
N∑

j=i+1
‖Y(j) − √

ρ Xa(j)h‖2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(17)

So, if we have a guess of X̂ (i−1), the partial metric for X
up to index i − 1 can be written as

MX̂(i−1)
= min

h

{
‖h‖2

R−1
h

+ ‖Y (i−1) − √
ρ X̂a(i−1)h‖2

}
(18)

whose optimum value ĥ and the cost can be computed
[23].

3.1 Recursive derivation of bound
For our blind search strategy, the calculation of the metric
or bound MX̂(i)

is needed at each tree node for com-
parison with the optimal value of objective function, R.
This bound can be derived recursively by simply express-
ing MX̂(i)

in terms of new observation and an additional
regressor X̂a(i) as follows:

MX̂(i)
= min

h

{
‖h‖2

R−1
h

+ ‖Y (i) − √
ρ X̂a(i)h‖2

}

= min
h

{
‖h‖2

R−1
h

+
∥∥∥∥[Y (i−1)

Y(i)

]
−√

ρ

[
X̂a(i−1)

X̂a(i)

]
h
∥∥∥∥2}
(19)

By invoking the block version of recursive least squares
(RLS) algorithm to the cost function in (19) with the data
vector of size 2 × 1 and the regressor matrix of dimension
2 × 2L, we get [23]

MX̂(i)
= MX̂(i−1)

+ eH
i �iei (20)

ĥi = ĥi−1 + Giei, (21)

where

ei = Y(i) − √
ρ X̂a(i)ĥi−1 (22)

�i =
[

I2 + ρX̂a(i)Pi−1X̂a(i)H
]−1

(23)

Gi = √
ρ Pi−1X̂a(i)H�i (24)

Pi = Pi−1 − Gi�
−1
i GH

i (25)

The RLS recursions are initialized by

MX̂(i−1)
= 0, ĥ−1 = 0 and P−1 = Rh.

Before introducing our algorithm, we first number the
|�|2 combinations of the constellation points from two
antennas by 1, 2, . . . , |�|2 and treat them as a big con-
stellation set � , where the kth

(
1 ≤ k ≤ |�|2) vector con-

stellation point is denoted by �(k). We then perform the
depth-first search of signal tree for joint ML solution.

Algorithm 1 Blind MAP algorithm
Parameters: Initial search radius r, ρ and channel covari-
ance matrix Rh.
Inputs: Y , modulation constellation � and the 1 × N
carrier index vector I.
Outputs: Estimated channel ĥ and data vector X̂ .

1. (Initialize) Set i = 1 ,I(i) = 1, X̂ (i) = �
(
I(i)

)
and

construct the Alamouti matrix X̂a(i).
2. (Compare with lower bound) Compute and store

the metric MX̂(i)
. If MX̂(i)

> r ; go to 3; else go to 4.
3. (Backtracking) Find the largest 1 ≤ j ≤ i such that

I(j) < |�|2. If there exists such j, set i = j and go to
5; else go to 6.

4. (Increment subcarrier) If i < N , set
i = i + 1, I(i) = 1, X̂ (i) = � (I(i)) and go to 2; else
store the current X̂ (N), update r = MX̂(N)

and go
to 3.

5. (Increment constellation) Set I(i) = I(i) + 1 and
X̂ (i) = � (I(i)). Go to 2.

6. (End/Restart) If a full-length sequence X̂ (N) has
been found in step 4, output it as the MAP solution
and terminate; otherwise, double ’r’ and go to 1.

The algorithm essentially reduces the search space of
exhaustive ML search by performing a trimmed search
over the signal tree of N layers, where each tree node at
the ith layer corresponds to a specific partial sequence
X (i) and each tree node at the intermediate layer has |�|2
offsprings to the next layer.
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The parameter ρ can be easily determined by estimating
the noise variance, whereas for Rh, our simulation results
indicate that we can replace it with an identity matrix with
almost no effect on the performance via carrier reorder-
ing (see next section). To obtain the initial guess of search
radius, we can use the strategy described in [20] to deter-
mine r that would guarantee a MAP solution with very
high probability. Nevertheless, the algorithm itself takes
care of the value of r, in that if it is too small such that
the algorithm is not able to backtrack, then it doubles the
value of r; if it is too large such that the algorithm reaches
the last subcarrier too quickly, then it reduces r to the
most recent value of objective function (see steps 4 and 6).
Therefore, any choice of r would guarantee the MAP
solution.

The complexity of the algorithm is mainly attributed to
the calculation of the bound MX̂(i)

(step 2) and the back-
tracking (step 3). The rest of the steps are simple additions
and subtractions. From the RLS recursions, it can be seen
that the calculation of the bound depends heavily on com-
putation of 2L×2L matrix Pi in (25). In Section 4, we shall
see how computation of Pi can be avoided by exploiting
the structure of the FFT matrix, while in Section 5 we shall
deal with the issue of backtracking.

4 Low-complexity blind algorithm
As mentioned earlier, the complexity of computing the
metric MX̂(i)

depends heavily on computation of matrix
Pi. We show how we can completely avoid computing
Pi and hence simply discard (25) from RLS recursions.
This means that RLS algorithm will reduce to least mean
square (LMS) in terms of complexity.

4.1 Reducing complexity by avoiding Pi

Let us assume that P1 = I and that ai are orthogonal for
i = 0, 1, 2, · · · , N − 1, i.e. aH

i aj = 0 for i 
= j b. First, we
merge (24) and (25) to get

Pi = Pi−1 − ρPi−1X̂H
a (i)�H

i X̂a(i)Pi−1 (26)

Now using (26) and our assumptions, it follows by
induction that PiX̂H

a (i + 1) = X̂H
a (i + 1), PiX̂H

a (i + 2) =
X̂H

a (i+2) and Pi+1X̂H
a (i+2) = X̂H

a (i+2). This means that
if the successive regressors are orthogonal, we can sim-
ply replace Pi with an identity matrix and hence discard
Equation 25. Moreover, from the orthogonality assump-
tions, it also follows that

X̂a(i)X̂H
a (j) =

⎧⎨⎩ 0 if i 
= j

L
(
‖X̂1(0)‖2 + ‖X̂2(0)‖2

)
I2 if i = j

(27)

where In represents an n×n identity matrix. Incorporating
these results into the RLS recursions, the matrices �i and
Gi become independent of Pi and are given by

�i = 1

1 + ρL
(
‖X̂ 1(i)‖2 + ‖X̂ 2(i)‖2

) I2 (28)

Gi = √
ρ X̂a(i)H�i (29)

The resulting low-complexity blind algorithm based on
(20) to (22), (28) and (29) for metric computation, requires
no matrix inversion or computation of Pi.

4.2 Reducing complexity by carrier reordering
In the above approximation, we assumed that P1 = I
and ai are orthogonal which allows us to use (27). How-
ever, ai are columns of the partial FFT matrix Ai, so
strictly speaking, they are not orthogonal. Hence, the suc-
cessive regressor matrices would not be orthogonal, too.
We will show that we can make them orthogonal or semi-
orthogonal by carrier reordering. To understand the idea,
we compute and plot the magnitude of autocorrelation of
these partial vectors given by

|aH
i al| =

{
L if i = l
1
L | sin(π(i−1)L/N)

sin(π(i−1)/N)
if i 
= l

(30)

in Figure 2 for N = 16 and L = 4 and where we set
l = 1. It can be seen that columns 1, 5, 9, and 13 are
orthogonal to each other and so are the columns 2, 6,
10, 14 and so on. If we visit the subcarriers in the order
1, 5, 9, 13, 2, 6, 10, 14, · · · , 4, 8, 12, 16, we find that consec-
utive vectors will be orthogonal or approximately orthog-
onal. In general, it is found that with � = N/L, the vectors
ai, ai+�, ai+2�, ∀i are approximately orthogonal. There-
fore, by simple reordering the carriers, we can achieve
orthogonality among different subcarriers and use that
fact to reduce the complexity of our algorithm as done in
section 4.1.

5 Complexity reduction by using reliable carriers
Despite avoiding Pi and the carrier reordering approach, it
has been observed that complexity of algorithm becomes
very large in multiple-antenna systems as compared to
single-antenna systems especially in the low SNR regime.
The major source of complexity is attributed to backtrack-
ing of the proposed algorithm. Backtracking occurs when-
ever the constraint MX̂(i)

< r is not satisfied. The algo-
rithm then goes back either to the nearest subcarrier or
to the current subcarrier whose alphabet is not exhausted
and increments the alphabet (step 3 then step 5). This
issue is rigorously analysed in [20] where it is shown that
the probability of backtracking is almost zero at higher
SNR; however, no solution is proposed to deal with it
in the lower SNR case. The fact is that backtracking is
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Figure 2 Autocorrelation as a function of i for N = 16 and L = 4.

inevitable in all blind search algorithms. Although it can-
not be avoided, we propose to minimize its effect by using
the concept of reliable carriers. The previous methods of
reducing the complexity have the following drawbacks:

1. The proposed solutions are still very complex as they
do not take into account the issue of backtracking
which is a major source of complexity. They can be
considered to have low complexity only in the high
SNR regime, where we essentially get rid of
backtracking.

2. The proposed solutions do not work in low SNR
regime and becomes infeasible for multiple-antenna
systems. This is due to the fact that the search space
at each node grows as |�|Nt as compared to |�| for
the SISO system, where |�| is the alphabet size and
Nt is the number of transmit antennas. Thus, the
complexity of the proposed algorithms due to
backtracking ultimately dominates the complexity
induced by computing the matrix Pi (or its inverse)
and becomes the real bottleneck.

3. The proposed methods do not make use of the fact
that pilots are usually present in real systems to aid in
channel estimation and that the channel is usually
slowly varying.

We can make use of the third point to our advantage.
Specifically, the presence of some pilots and slow varia-
tion in the channel allows us to get a tentative estimate of
the data. If we are able to arrange the data according to its
reliability, starting with the most reliable data, then there
would be a less chance that we need to backtrack. Since

earlier data is reliable, there is no need to backtrack for this
part. The later data might not be reliable, but by the time
we start processing this data, the algorithm would have
been already converged. However, measuring data relia-
bility requires tentative channel/data estimates. Thus, the
blind algorithm can be turned into a semi-blind algorithm
to reliably track the channel along with the data detection.
The semi-blind algorithm would require a short training
sequence of L symbols only at the start of transmission to
get a tentative estimate of the data and its reliability and
no further pilots or channel statistics would be required.

5.1 Measuring the reliability
For measuring the reliability of data carriers, we borrow
the idea presented in [21] by the author of the current
paper, where it was used in the context of non-linear dis-
tortion mitigation in OFDM. To minimize backtracking,
the algorithm must devise a procedure to identify the reli-
able subcarriers from the tentative estimates of channel
and the data. With receiver having an estimate of channel,
the decoding process can be accomplished by rewriting
(10) into the form as shown below:

Ỹ = √
ρ HaX + Ñ , (31)

where Ỹ =
[[
Y (k)

]T [
Y∗(k+1)

]T
]T

, Ñ =
[[
N (k)

]T

[
N ∗(k+1)

]T
]T

and Ha is an Alamouti-like matrix defined
as

Ha �
[

�1 �2
�∗

2 −�∗
1

]
(32)



Zaib and Al-Naffouri EURASIP Journal on Advances in Signal Processing 2014, 2014:131 Page 8 of 14
http://asp.eurasipjournals.com/content/2014/1/131

By left multiplying both sides of (31) with 1√
ρ

H−1
a and

rearranging the terms, we get:

X̂ = X + D (33)

with the difference vector; D � 1√
ρ

H−1
a Ñ . The imperfect

knowledge of the channel results in an estimation error
�Ha and consequently the vector D represents the dis-
tortion due to channel estimation error and the effect of
additive noise.

To assess the reliability, consider a data carrier X̂ (k)

(in scalar case) and its nearest constellation point 〈X̂ (k)〉.
Treating channel estimation error as noise, ML-based
decoding would yield X (k) by mapping X̂ (k) to the near-
est constellation point 〈X̂ (k)〉. Such a scheme would be
very efficient at higher SNR if distortion was only due
to AWGN. However, in our case, we have an additional
perturbation due to channel estimation error that is inde-
pendent of SNR, and therefore, we expect that part of
data samples would be severely effected by the channel
distortion and fall outside their actual decision regions.
Clearly, there is a need to assess and identify these unre-
liable data coefficients for our algorithm to reduce the
backtracking.

Authors in [21] have developed a rigorous method for
assessing the reliability of estimated data coefficients.
Intuitively, for the data carrier X̂ (k), we can measure its
reliability based on relative posterior probability that the
difference term D(k) equals X̂ (k) − 〈X̂ (k)〉 to the proba-
bility that it equals some other vector X̂ (k) − �m|�m 
=
〈X̂ (k)〉. For example,

R(k) = log
Pr

(
〈X̂ (k)〉 = X (k) | X̂ (k)

)
Pr

(
〈X̂ (k)〉 = XNN (k) | X̂ (k)

)

= log
Pr

(
D(k) = X̂ (k) − 〈X̂ (k)〉

)
Pr

(
D(k) = X̂ (k) − XNN (k)

)
(34)

defines the reliability in decoding ˆX (k) to the closest con-
stellation point relative to decoding to the nearest neigh-
bour XNN (k). Figure 3 illustrates this concept, such that
for instance even though X̂ (1) and X̂ (2) have the same
distance from 〈X̂ (1)〉 = 〈X̂ (2)〉, X̂ (2) has a higher reli-
ability than X̂ (1) as it is farther from nearest neighbour.
This suggests the dependence of phase θX̂ (k)−〈X̂ (k)〉 on the
reliability in addition to the magnitude |X̂ (k) − 〈X̂ (k)〉|.
In essence, the reliability of a measurement at each tone is
a function that maps a triple (magnitude, phase and chan-
nel gain) into R[1,∞]. The exact expression for reliability

Figure 3 Reliability of data carriers X̂ (k) relative to the nearest
neighbour constellation points XNN.

is the generalization of (34) to the vector-wise likelihood
ratio defined as

Rexact = log
fD

(
X̂ − 〈X̂ 〉

)
∑|�|−1

m=0,�m 
=〈X̂ 〉 fD
(
X̂ − �m

) , (35)

where fD(.) is the pdf of the distortion vector D, which
by definition, can be easily seen to be Gaussian circu-
larly symmetric with variance σ 2

D = 1
ρ

(
Ha−1) (Ha−1)H .

The above computation for exact reliability is however
inefficient since it would require O(N |�|) evaluations of
fD(.) which grows with constellation size |�|. Alternately,
the geometric-based approximations for assessing relia-
bility as derived in [21] may be employed with marginal
loss in the performance. Ultimately, once the vector R

is computed, we can proceed to select the most reliable
data tones. These reliable data tones can then be sup-
plied to our algorithm for initial search of the ML solution.
Based on the above developments, we now introduce the
semi-blind algorithm.

5.2 The semi-blind algorithm
1. Obtain an initial estimate of the channel vector h

from L training/pilot symbols at start of
transmission, then repeat the following steps over
two consecutive time instants.

2. Predict and decode the carriers X̂ from previous
channel estimate ĥ and observation vector Ỹ .

3. Use (35) to compute reliability of data carriers,
R(k)P

k=1, with 1 ≤ P ≤ N and rearrange them in
decreasing order of their reliability. The parameter P
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represents the total number of reordered carriers
used by the algorithm.

4. Run the blind algorithm proposed previously,
starting with most reliable data first, to obtain the
exact ML estimates of the channel and the data.

Remarks: The first three steps of the semi-blind algo-
rithm serve as pre-processing steps tailored to minimizing
the backtracking of blind algorithm in step 4. One can
easily obtain the channel estimates from pilots in step 1.
The prediction step 2 is trivial and would suffer only lit-
tle distortion as the channel does not change much in
slow fading. To initiate the RLS recursions of blind algo-
rithm in step 4, we initialize the channel vector with its
previous estimate and set Pi = I; thus, no channel statis-
tics are required a priori. The blind algorithm is supplied
with reordered carriers with most reliable data to start
over the search (step 3), so that the there will be almost
no backtracking during the convergence of the algorithm.
However, we observe that the carrier reordering based on
reliability measures does not ensure orthogonality of suc-
cessive regressors; therefore, the low complexity variants
of RLS introduced earlier cannot be employed.

6 Exploiting the structure of Alamouti coding
In our previous approaches to reducing the complexity
of blind algorithm, we did not use the Alamouti coding
structure, which can simplify the receiver design by lin-
early processing the received data samples. We will show
that by exploiting the orthogonal structure of Alamouti
coding, we can either achieve (a) The complexity reduc-
tion of blind algorithm for MISO OFDM system to that of
SISO OFDM system of [20] with little effect on estimation
performance, or (b) improve the estimation performance
of our algorithm with full complexity of the MISO OFDM.
To achieve the first goal, we start by multiplying (31) by
HH

a to get

z = HH
a Ỹ = √

ρ HH
a HaX + HH

a Ñ

= √
ρ BX + w,

(36)

where z is the new observation vector, w is the noise
vector, and the block diagonal matrix B is defined as

B = I2 ⊗ (
�∗

1�1 + �∗
2�2

)
, (37)

where ⊗ represents the Kronecker product. Thus, owing
to the orthogonal structure of Alamouti, the system in (36)
is decoupled into two SISO OFDM systems as

z1 = √
ρ B̃X (k)

1 + w1 (38)

z2 = √
ρ B̃X (k)

2 + w2, (39)

where B̃ = (
�∗

1�1 + �∗
2�2

)
. The joint ML solutions

for SISO systems (42) would involve only 2|�|N hypoth-

esis tests as opposed to |�|2N for the original system,
which implies huge reduction in complexity. However, this
comes at the cost of estimation performance as number of
unknown channel parameters in (42) are increased to 2L
as opposed to L is the SISO system. In a similar fashion,
the estimation performance of the blind algorithm can be
improved by multiplying (10) by XH

a as follows:

z = XH
a Y = √

ρ XH
a Xah + XH

a N

= √
ρ Bh + w,

(40)

where z is the new observation vector, w is the noise
vector, and the block diagonal matrix B is

B = I2 ⊗
(

Adiag
(
|X (k)

1 |2 + |X (k)
2 |2

)
AH

)
(41)

We can see that the system in (40) can also be decoupled
as

z1 = √
ρ B̃h1 + w1 (42)

z2 = √
ρ B̃h2 + w2, (43)

where B̃ =
(

Adiag
(
|X (k)

1 |2 + |X (k)
2 |2

)
AH

)
. It can be

seen that the above equations correspond to the SISO sys-
tems for which the joint ML solution can be derived easily.
It is worth mentioning that the search space for blind ML
is not reduced due to dependence of observations and
the matrix B on X (k)

1 and X (k)
2 . However, the number of

channel parameters is reduced to half, which results in an
improved estimation performance. In short, the Alamouti
structure enables us to either improve upon the estima-
tion performance or the complexity reduction but not the
both.

7 Simulation results
For simulations, we first consider OFDM system with
N = 16 subcarriers and channel length L = 4 for
each transmit-receive channel and CP length of at least
L − 1. For blind algorithm, both channels are independent
Rayleigh fading, assumed stationary over two consecu-
tive OFDM blocks and each having an exponential power
decay profile, i.e. E

{|hi(τ )|2} = e−0.2τ . Information sym-
bols are modulated using binary phase shift keying (BPSK)
or quadrature amplitude modulation (QAM).

In Figure 4, we plot the results for N = 16, BPSK
data symbols using perfectly known channel and our exact
blind algorithm, together with low-complexity variants,
i.e. blind algorithm with (a) Pi = I and (b) Pi = I with
subcarrier reordering. In the first case, the performance
degrades and bit error rate (BER) reaches an error floor.
However, with subcarrier reordering approach, we almost
get the same performance as that of exact blind algorithm



Zaib and Al-Naffouri EURASIP Journal on Advances in Signal Processing 2014, 2014:131 Page 10 of 14
http://asp.eurasipjournals.com/content/2014/1/131

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

Blind Algo. with P
i
 set to I

Blind Algo. with subcarrier reordering
Proposed blind algorithm
Perfectly known channel

Figure 4 BER vs SNR for Alamouti-coded BPSK OFDM over Rayleigh fading channel with N = 16 and L = 4.

without requiring the channel statistics. A similar trend is
observed in Figure 5, when 4-QAM signal modulation is
considered.

For semi-blind algorithm, we adopt the AR(1) process to
model the slow rayleigh fading channels, where the chan-
nel weight vector varies as [23]: h(n) = αh(n − 1) + q(n)

and where α = J0(2π fdTs) and q is a complex normal
vector with covariance matrix (1 − α2)I. The product of

maximum Doppler frequency fd and sampling time Ts
referred to as normalized Doppler frequency FD, controls
the amount of variations in the channel statistics. Two dif-
ferent values of normalized Doppler frequency, i.e., 0.1
and 0.001, are considered in the simulations. Results for
semi-blind algorithm are presented against perfect coher-
ent detection in Figures 6 and 7 for BPSK and 4−QAM
modulations respectively which show favourable perfor-
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Figure 5 BER vs SNR for Alamouti-coded 4-QAM OFDM over Rayleigh fading channel with N = 16 and L = 4.
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Figure 6 BER vs SNR for MISO-OFDM with BPSK modulation over Rayleigh fading channel with N = 32 and L = 4.

mance of algorithm under different fading conditions. For
higher modulations and number of subcarriers, we use the
SISO OFDM systems obtained after decoupling by Alam-
outi structure and results are presented in Figure 8 for
16−QAM constellation with N = 64.

To assess the computational complexity of proposed
algorithm, we compare the average number of nodes vis-
ited by the algorithm with various reliability measures

in Figure 9. It is clearly observed that proposed reliabil-
ity scheme offers significantly lower complexity at lower
SNR values. At higher SNR, the complexity is constant,
confirming the fact that there is almost no backtrack-
ing. Figure 10 shows that the performance for various
degrees of reliability measures is almost identical which
means that computational advantages are attained with-
out degrading the performance. Through simulations, it
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Figure 7 BER vs SNR for MISO-OFDM with 4-QAM modulation over Rayleigh fading channel with N = 32 and L = 4.
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Figure 8 BER vs SNR for SISO-OFDM with 16-QAM modulation over Rayleigh fading channel with N = 64 and L = 4.

has also been observed that the reliability of around 50%
to 60% is enough for a good performance, although more
importantly, the algorithm does not disfavour the usage of
more reliable carriers.

Finally, in Figure 11, the complexity of comparison for
different modulation schemes such as BPSK, 4-QAM and
16-QAM is presented which clearly indicates the compu-
tational advantages of proposed reliability-based method.

8 Conclusions
In this paper, we presented a blind ML algorithm for
joint channel estimation and data detection in OFDM
wireless systems using Alamouti STBC coding. The simu-
lation results show favourable performance of algorithm.
As evident from simulations, our low-complexity blind
algorithm performs equally well as exact blind algorithm.
Moreover, the new algorithm does not need any prior
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Figure 9 Complexity of proposed semi-blind algorithm with various degrees of reliability measurements. BPSK modulation with N = 16
and L = 4.
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L = 4.

information about channel statistics as it avoids calculat-
ing matrix Pi with subcarrier reordering. Another major
source of complexity in blind algorithm is the issue of
backtracking which becomes more prominent in the low-
SNR regime. This issue was not tackled in the previous
studies. We proposed a semi-blind algorithm which min-
imizes the probability of backtracking by supplying the

blind algorithm with reordered subcarriers based on their
reliability computations using a sophisticated reliabil-
ity criterion. By minimizing the backtracking, significant
improvement is achieved in terms of complexity without
compromising the performance. Moreover, the orthog-
onal structure of Alamouti coding was also exploited
to yield complexity reduction or improved estimation
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performance. The reduced complexity variant turns out to
be very handy when large number of subcarriers and/or
large size constellation modulations are employed.

Endnotes
aThis lemma was proved in [20] for SISO case; we

simply extend it here to the multi-antenna case.
bIn fact, a weaker condition that three consecutive

vectors ai, ai+1 and ai+2 are orthogonal would suffice.
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